Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.339
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Clin Exp Pharmacol Physiol ; 51(4): e13844, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38350599

RESUMEN

Botulinum neurotoxin A (BoNT) is being shown to have anticancer action as a potential adjuvant treatment. The transient receptor potential (TRP) melastatin 2 (TRPM2) stimulator action of BoNT was reported in glioblastoma cells, but not in colorectal cancer (HT29) cells. By activating TRPM2, we evaluated the impacts of BoNT and oxaliplatin (OXA) incubations on oxidant and apoptotic values within the HT29 cells. Control, BoNT (5 IU for 24 h), OXA (50 µM for 24 h) and their combinations were induced. We found that TRPM2 protein is upregulated and mediates enhanced BoNT and OXA-induced Ca2+ entry in cells as compared to control cells. The increase of free reactive oxygen species (ROS), but the decrease of glutathione is the main ROS responsible for TRPM2 activation on H29 exposure to oxidative stress. BoNT and OXA-mediated Ca2+ entry through TRPM2 stimulation in response to H2 O2 results in mitochondrial Ca2+ overload, followed by mitochondrial membrane depolarization, apoptosis and caspase-3/-8/-9, although they were diminished in the TRPM2 antagonist groups (N-(p-amylcinnamoyl)anthranilic acid and carvacrol). In conclusion, by increasing the susceptibility of HT29 tumour cells to oxidative stress and apoptosis, the combined administration of BoNT and OXA via the targeting of TRPM2 may offer a different approach to kill the tumour cells.


Asunto(s)
Toxinas Botulínicas Tipo A , Neoplasias Colorrectales , Canales Catiónicos TRPM , Humanos , Oxaliplatino/farmacología , Especies Reactivas de Oxígeno/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Regulación hacia Arriba , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Muerte Celular , Estrés Oxidativo/fisiología , Apoptosis/fisiología , Neoplasias Colorrectales/tratamiento farmacológico , Calcio/metabolismo
2.
CNS Neurosci Ther ; 30(2): e14373, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37501354

RESUMEN

BACKGROUND: Elderly patients often exhibit postoperative cognitive dysfunction (POCD), a postsurgical decline in memory and executive function. Oxidative stress and neuroinflammation, both pathological characteristics of the aged brain, contribute to this decline. This study posits that electroacupuncture (EA) stimulation, an effective antioxidant and anti-inflammatory modality, may enhance telomerase reverse transcriptase (TERT) function, the catalytic subunit of telomerase known for its protective properties against cellular senescence and oxidative damage, to alleviate POCD in aged mice. METHODS: The animal POCD model was created by subjecting aged mice to abdominal surgery, followed by EA pretreatment at the Baihui acupoint (GV20). Postoperative cognitive function was gauged using the Morris water maze (MWM) test. Hippocampal TERT mRNA levels and telomerase activity were determined through qPCR and a Telomerase PCR ELISA kit, respectively. Oxidative stress was assessed through superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) levels. Iba-1 immunostaining determined the quantity of hippocampal microglia. Additionally, western blotting assessed TERT, autophagy markers, and proinflammatory cytokines at the protein level. RESULTS: Abdominal surgery in aged mice significantly decreased telomerase activity and TERT mRNA and protein levels, but increased oxidative stress and neuroinflammation and decreased autophagy in the hippocampus. EA-pretreated mice demonstrated improved postoperative cognitive performance, enhanced telomerase activity, increased TERT protein expression, improved TERT mitochondrial localization, and reduced oxidative damage, autophagy dysfunction, and neuroinflammation. The neuroprotective benefits of EA pretreatment were diminished following TERT knockdown. CONCLUSIONS: Our findings underscore the significance of TERT function preservation in alleviating surgery-induced oxidative stress and neuroinflammation in aged mice. A novel neuroprotective mechanism of EA stimulation is highlighted, whereby modulation of TERT and telomerase activity reduces oxidative damage and neuroinflammation. Consequently, maintaining TERT function via EA treatment could serve as an effective strategy for managing POCD in elderly patients.


Asunto(s)
Disfunción Cognitiva , Electroacupuntura , Complicaciones Cognitivas Postoperatorias , Telomerasa , Animales , Ratones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Enfermedades Neuroinflamatorias , Estrés Oxidativo/fisiología , Complicaciones Cognitivas Postoperatorias/metabolismo , ARN Mensajero/metabolismo
3.
Geroscience ; 46(1): 517-530, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38153668

RESUMEN

Treatment of Alzheimer's disease (AD) has been limited to managing of symptoms or anti-amyloid therapy with limited results and uncertainty. Seeking out new therapies that can reverse the effects of this devastating disease is important. Hyperbaric oxygen (HBO) therapy could be such a candidate as it has been shown to improve brain function in certain neurological conditions. Furthermore, the role sex plays in the vulnerability/resilience to AD remains equivocal. An understanding of what makes one sex more vulnerable to AD could unveil new pathways for therapy development. In this study, we investigated the effects of HBO on cognitive, motor, and affective function in a mouse model of AD (5xFAD) and assessed protein oxidation in peripheral tissues as a safety indicator. The motor and cognitive abilities of 5xFAD mice were significantly impaired. HBO therapy improved cognitive flexibility and associative learning of 5xFAD females but not males, but HBO had no effect other aspects of cognition. HBO also reversed AD-related declines in balance but had no impact on gait and anxiety-like behavior. HBO did not affect body weights or oxidative stress in peripheral tissues. Our study provides further support for HBO therapy as a potential treatment for AD and emphasizes the importance of considering sex as a biological variable in therapeutic development. Further investigations into the underlying mechanisms of HBO's sex-specific responses are warranted, as well as optimizing treatment protocols for maximum benefits.


Asunto(s)
Enfermedad de Alzheimer , Oxigenoterapia Hiperbárica , Masculino , Ratones , Animales , Femenino , Enfermedad de Alzheimer/tratamiento farmacológico , Cognición , Oxígeno , Estrés Oxidativo/fisiología
4.
Respir Res ; 24(1): 295, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001457

RESUMEN

INTRODUCTION: Thioredoxin (Trx) is a secretory protein that acts as an antioxidant, redox regulator, anti-allergic, and anti-inflammatory molecule. It has been used to treat dermatitis and inflammation of the digestive tract. In the lungs, Trx has a significant anti-inflammatory impact. On the other hand, Chronic Obstructive Pulmonary Disease (COPD) is one of the significant causes of death in the developed world, with a tremendous individual and socioeconomic impact. Despite new initiatives and endless treatment trials, COPD incidence and death will likely escalate in the coming decades. AREAS COVERED: COPD is a chronic inflammatory disease impacting the airways, lung parenchyma, and pulmonary vasculature. Oxidative stress and protease-antiprotease imbalances are thought to be involved in the process. The most popular respiratory inflammatory and allergic disorders therapies are corticosteroids and ß-receptor agonists. These medications are helpful but have some drawbacks, such as infection and immunosuppression; thus, addressing Trx signalling treatments may be a viable COPD treatment approach. This review shall cover the pathophysiology of COPD, the pharmacognosy of anti-COPD drugs, including the assets and liabilities of each, and the role and mechanism of Trx in COPD treatment. EXPERT OPINION: Limited research has targeted the thioredoxin system as an anti-COPD drug. Spectating the increase in the mortality rates of COPD, this review article would be an interesting one to research.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Pulmón/metabolismo , Estrés Oxidativo/fisiología , Antiinflamatorios/uso terapéutico , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapéutico
5.
Medicine (Baltimore) ; 102(47): e36299, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38013301

RESUMEN

Diabetic cardiomyopathy (DCM) is a pathophysiological condition caused by diabetes mellitus and is the leading cause of diabetes mellitus-related mortality. The pathophysiology of DCM involves various processes, such as oxidative stress, inflammation, ferroptosis, and abnormal protein modification. New evidence indicates that dysfunction of glutamine (Gln) metabolism contributes to the pathogenesis of DCM by regulating these pathophysiological mechanisms. Gln is a conditionally essential amino acid in the human body, playing a vital role in maintaining cell function. Although the precise molecular mechanisms of Gln in DCM have yet to be fully elucidated, recent studies have shown that supplementing with Gln improves cardiac function in diabetic hearts. However, excessive Gln may worsen myocardial injury in DCM by generating a large amount of glutamates or increasing O-GlcNacylation. To highlight the potential therapeutic method targeting Gln metabolism and its downstream pathophysiological mechanisms, this article aims to review the regulatory function of Gln in the pathophysiological mechanisms of DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Humanos , Glutamina/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Corazón , Estrés Oxidativo/fisiología
6.
In Vivo ; 37(6): 2877-2887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905638

RESUMEN

BACKGROUND/AIM: Oxidative stress in association with metabolic syndrome represents a complex disease entity that has emerged as a significant public health challenge, and it is closely linked to an elevated risk of cardiovascular disease, type 2 diabetes, and even cancer. The objective of this study was to investigate the effectiveness of selenium supplementation in managing oxidative stress while considering a well-balanced diet based on a healthy lifestyle and diet therapy. PATIENTS AND METHODS: The study included a total of 206 participants divided into three groups: the control group consisting of 35 individuals (17.0%) named LC, the diet therapy group comprising 119 individuals (57.8%) named LD, and the diet therapy group supplemented with selenium consisting of 52 individuals (25.2%) named LD+Se. Various clinical parameters such as body mass index (BMI), weight status, fat mass, visceral fat, and sarcopenia index, as well as paraclinical parameters including the HOMA index, cholesterol, triglycerides, C-reactive protein, and HGZ, were evaluated. Additionally, oxidative stress parameters using the FORD, FORT and MIXT tests were measured. RESULTS: Selenium supplementation, along with FORD and FORT tests, demonstrated effectiveness in individuals with chronic venous disease, with a significantly greater decrease observed in those with chronic venous disease in the LD+Se group. CONCLUSION: Physiological aging has an important role in triggering or aggravating oxidative stress, and the use of antioxidant products such as selenium can reduce this process.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Selenio , Humanos , Síndrome Metabólico/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estrés Oxidativo/fisiología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo
7.
Altern Ther Health Med ; 29(8): 156-165, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37535922

RESUMEN

Objective: Diabetic retinopathy (DR), characterized by neuronal damage in the retina, is primarily driven by oxidative stress resulting from diabetes (DM). This study investigated the potential effects of methylene blue (MB) on streptozotocin (STZ)-induced DR. Methods: A rat model of DR was established via STZ injection, while a cell model was created using high-glucose (HG) exposure of human retinal microvascular endothelial cells. Evaluation of oxidative stress markers, pro-inflammatory cytokines, and pro-apoptotic proteins was performed based on their expression profiles in human retinal microvascular endothelial cells. Results: MB treatment significantly upregulated the expression of sirtuin 1 (SIRT1), which was found to be downregulated in the retinal tissues of STZ-treated rats and HG-exposed human retinal microvascular endothelial cells, as determined by polymerase chain reaction (PCR). Furthermore, MB therapy effectively suppressed STZ-induced oxidative stress, inflammation, and cell death. Consistent with the in vivo findings, MB activated the expression of SIRT1, thereby protecting HG-treated human retinal microvascular endothelial cells against oxidative stress, inflammation, and apoptosis. Conclusion: These results support the conclusion that MB mitigates DR by activating SIRT1, leading to a reduction of inflammation, apoptosis, and oxidative stress.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratas , Humanos , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Azul de Metileno/efectos adversos , Azul de Metileno/metabolismo , Células Endoteliales/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Estrés Oxidativo/fisiología , Inflamación/tratamiento farmacológico , Apoptosis
8.
Phytother Res ; 37(11): 5300-5314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37526050

RESUMEN

Pyroptosis plays an important role in inflammatory diseases such as viral hepatitis and atherosclerosis. Apigenin exhibits various bioactivities, particularly anti-inflammation, but its effect on pyroptosis remains unclear. The aim of this study is to investigate the effect of apigenin on pyroptosis and explore its potential against inflammatory diseases. THP-1 macrophages treated by lipopolysaccharides/adenosine 5'-triphosphate were used as the in vitro pyroptosis model. Western blot was used to detect the expression of NLRP3 inflammasome components and key regulators. Immunofluorescence was used to observe ROS production and intracellular location of p65. The potential of apigenin against inflammatory diseases was evaluated using atherosclerotic mice. Plaque progression was observed by pathological staining. Immunofluorescence was used to observe the expression of NLRP3 inflammasome components in plaques. The results showed that apigenin inhibited NLRP3 inflammasome activation. Apigenin reduced ROS overproduction and inhibited p65 nuclear translocation. Additionally, apigenin decreased the expression of NLRP3 inflammasome components in the plaque. Plaque progression was inhibited by apigenin. In conclusion, apigenin exhibited a preventive effect on macrophage pyroptosis by reducing oxidative stress and inhibiting the NF-κB pathway. Apigenin may alleviate atherosclerosis at least partially by inhibiting macrophage pyroptosis. These findings suggest apigenin to be a promising therapeutic agent for inflammatory diseases.


Asunto(s)
Aterosclerosis , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Apigenina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Estrés Oxidativo/fisiología , Macrófagos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo
9.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569737

RESUMEN

Hyperbaric oxygen therapy (HBOT) is a therapeutical approach based on exposure to pure oxygen in an augmented atmospheric pressure. Although it has been used for years, the exact kinetics of the reactive oxygen species (ROS) between different pressures of hyperbaric oxygen exposure are still not clearly evidenced. In this study, the metabolic responses of hyperbaric hyperoxia exposures for 1 h at 1.4 and 2.5 ATA were investigated. Fourteen healthy non-smoking subjects (2 females and 12 males, age: 37.3 ± 12.7 years old (mean ± SD), height: 176.3 ± 9.9 cm, and weight: 75.8 ± 17.7 kg) volunteered for this study. Blood samples were taken before and at 30 min, 2 h, 24 h, and 48 h after a 1 h hyperbaric hyperoxic exposure. The level of oxidation was evaluated by the rate of ROS production, nitric oxide metabolites (NOx), and the levels of isoprostane. Antioxidant reactions were assessed through measuring superoxide dismutase (SOD), catalase (CAT), cysteinylglycine, and glutathione (GSH). The inflammatory response was measured using interleukine-6, neopterin, and creatinine. A short (60 min) period of mild (1.4 ATA) and high (2.5 ATA) hyperbaric hyperoxia leads to a similar significant increase in the production of ROS and antioxidant reactions. Immunomodulation and inflammatory responses, on the contrary, respond proportionally to the hyperbaric oxygen dose. Further research is warranted on the dose and the inter-dose recovery time to optimize the potential therapeutic benefits of this promising intervention.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Masculino , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Cinética , Oxígeno , Estrés Oxidativo/fisiología
10.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(7): 1026-1031, 2023 Jul 06.
Artículo en Chino | MEDLINE | ID: mdl-37482739

RESUMEN

Objectives: To study the association between metals mixture exposure and DNA oxidative damage using mixture analysis methods, and to explore the most significant exposure factors that cause DNA oxidative damage. Methods: Workers from steel enterprises were recruited in Shandong Province. Urinary metals were measured by using the inductively coupled plasma mass spectrometry method. The level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was determined by using the ultra-high performance liquid chromatography-mass spectrometry method. Bayesian kernel machine regression (BKMR), elastic net regression and quantile g-computation regression were used to analyze the association between urinary metals and urinary 8-OHdG. Results: A total of 768 subjects aged (36.15±7.40) years old were included in the study. BKMR, elastic net regression and quantile g-computation all revealed an overall positive association between the mixture concentration and increased urinary 8-OHdG. The quantile g-computation results showed that with a 25% increase in metal mixtures, the urinary 8-OHdG level increased by 77.60%. The elastic net regression showed that with a 25% increase in exposure risk score, the urinary 8-OHdG level increased by 26%. The BKMR summarized the contribution of individual exposures to the response, and selenium, zinc, and nickel were significant contributors to the urinary 8-OHdG elevation. Conclusion: Exposure to mixed metals causes elevated levels of DNA oxidative damage, and selenium, zinc, and nickel are significant exposure factors.


Asunto(s)
Níquel , Selenio , Humanos , Adulto , Níquel/toxicidad , Teorema de Bayes , Metales/toxicidad , 8-Hidroxi-2'-Desoxicoguanosina , Estrés Oxidativo/fisiología , Zinc , Daño del ADN
11.
Animal Model Exp Med ; 6(3): 221-229, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272426

RESUMEN

BACKGROUND: Zataria multiflora and carvacrol showed various pharmacological properties including anti-inflammatory and anti-oxidant effects. However, up to now no studies have explored its potential benefits in ameliorating sepsis-induced aortic and cardiac injury. Thus, this study aimed to investigate the effects of Z. multiflora and carvacrol on nitric oxide (NO) and oxidative stress indicators in lipopolysaccharide (LPS)-induced aortic and cardiac injury. METHODS: Adult male Wistar rats were assigned to: Control, lipopolysaccharide (LPS) (1 mg/kg, intraperitoneal (i.p.)), and Z. multiflora hydro-ethanolic extract (ZME, 50-200 mg/kg, oral)- and carvacrol (25-100 mg/kg, oral)-treated groups. LPS was injected daily for 14 days. Treatment with ZME and carvacrol started 3 days before LPS administration and treatment continued during LPS administration. At the end of the study, the levels of malondialdehyde (MDA), NO, thiols, and antioxidant enzymes were evaluated. RESULTS: Our findings showed a significant reduction in the levels of superoxide dismutase (SOD), catalase (CAT), and thiols in the LPS group, which were restored by ZME and carvacrol. Furthermore, ZME and carvacrol decreased MDA and NO in cardiac and aortic tissues of LPS-injected rats. CONCLUSIONS: The results suggest protective effects of ZME and carvacrol on LPS-induced cardiovascular injury via improved redox hemostasis and attenuated NO production. However, additional studies are needed to elucidate the effects of ZME and its constituents on inflammatory responses mediated by LPS.


Asunto(s)
Óxido Nítrico , Sepsis , Ratas , Masculino , Animales , Óxido Nítrico/farmacología , Lipopolisacáridos/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas Wistar , Estrés Oxidativo/fisiología , Antioxidantes/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Compuestos de Sulfhidrilo/farmacología
12.
Medicine (Baltimore) ; 102(23): e33989, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37335660

RESUMEN

BACKGROUND: Vascular dementia is a cognitive dysfunction syndrome caused by cerebral vascular factors such as ischemic stroke and hemorrhagic stroke. The effect of acupuncture on vascular dementia models is ambiguous, and there is controversy about whether acupuncture has a placebo effect. Oxidative stress and inflammation are the most essential mechanisms in preclinical studies of vascular dementia. However, there is no meta-analysis on the mechanism of vascular dementia in animal models. It is necessary to explore the efficacy of acupuncture through Meta-analysis of preclinical studies. METHODS: Three major databases, PubMed, Embase and Web of Science (including medline), were searched in English until December 2022.The quality of the including literature was assessed using SYRCLE's risk of bias tool. Review Manager 5.3 was used to statistically summarize the included studies and the statistical effect values were expressed by SMD. The outcomes included: behavioral tests (escape latency, number of crossings), pathological sections (Nissl and TUNEL staining), oxidative stress markers (ROS, MDA, SOD, GSH-PX) and neuroinflammatory factors (TNF-α, IL-1ß, IL-6). RESULTS: A total of 31 articles were included in this meta-analysis. The results showed that the escape latency, the contents of ROS, MDA, IL-1ß, and IL-6 were decreased, and the contents of SOD and Nissl-positive neurons were increased in the acupuncture group as compared with the non-group (P < .05). Compared with the impaired group, the acupuncture group also had the above advantages (P < .05). In addition, the acupuncture group also increased the number of crossings and GSH-PX content, and decreased the expression of TUNEL-positive neurons and TNF-α (P < .05). CONCLUSIONS: From behavioral tests to slices and pathological markers in animal models of vascular dementia, it can be proved that acupuncture is effective in targeting oxidative stress and neuroinflammatory damage, and acupuncture is not a placebo effect. Nevertheless, attention needs to be paid to the gap between animal experiments and clinical applications.


Asunto(s)
Terapia por Acupuntura , Demencia Vascular , Animales , Demencia Vascular/terapia , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Terapia por Acupuntura/métodos , Estrés Oxidativo/fisiología , Modelos Animales de Enfermedad , Superóxido Dismutasa/metabolismo
13.
Trends Endocrinol Metab ; 34(9): 503-504, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365057

RESUMEN

In biology, there are no good or evil molecules. There is limited or no evidence to support the consumption of antioxidants or (super)foods rich in antioxidants, for the intended purpose of an antioxidant effect, because there is risk of interfering with free radicals and deoptimizing the regulation of fundamental processes.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Humanos , Antioxidantes/metabolismo , Estrés Oxidativo/fisiología , Radicales Libres , Suplementos Dietéticos
14.
Sci Rep ; 13(1): 7225, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142620

RESUMEN

Glutamate-induced neurotoxicity in the HT22 mouse hippocampal neuronal cell line has been recognized as a valuable cell model for the study of neurotoxicity associated with neurodegenerative diseases including Alzheimer's disease (AD). However, the relevance of this cell model for AD pathogenesis and preclinical drug screening remains to be more elucidated. While there is increasing use of this cell model in a number of studies, relatively little is known about its underlying molecular signatures in relation to AD. Here, our RNA sequencing study provides the first transcriptomic and network analyses of HT22 cells following glutamate exposure. Several differentially expressed genes (DEGs) and their relationships specific to AD were identified. Additionally, the usefulness of this cell model as a drug screening system was assessed by determining the expression of those AD-associated DEGs in response to two medicinal plant extracts, Acanthus ebracteatus and Streblus asper, that have been previously shown to be protective in this cell model. In summary, the present study reports newly identified AD-specific molecular signatures in glutamate-injured HT22 cells, suggesting that this cell can be a valuable model system for the screening and evaluation of new anti-AD agents, particularly from natural products.


Asunto(s)
Enfermedad de Alzheimer , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Estrés Oxidativo/fisiología , Transcriptoma , Neuronas/metabolismo , Línea Celular , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo
15.
Curr Hypertens Rev ; 19(1): 7-18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37183397

RESUMEN

Oxidative stress is one of the main mechanisms involved in the pathophysiology of arterial hypertension, inducing direct effects on the vasculature, and contributing to endothelial dysfunction and consequent impairment of vascular relaxation. Despite a large number of pharmacological treatments available, intolerable side effects are reported, which makes the use of natural antioxidants a promising and complementary alternative for the prevention and treatment of hypertension. From this perspective, the current review aims to investigate and characterize the main antioxidants of natural origin for the treatment of hypertension. Antioxidants act in the inhibition or extinction of chemical reactions involving free radicals and consequently reduce the occurrence of damage caused by these cellular components. The main natural antioxidants for treating hypertension include caffeic acid, ferulic acid, curcumin, apocynin, quercetin, lipoic acid, and lycopene. The effects associated with these antioxidants, which make them therapeutic targets for decreasing high blood pressure, include increased activation of antioxidant enzymes, stimulation of nitric oxide bioavailability, and reduction in angiotensin-converting enzyme activity, arginase, and NADPH oxidase, whose effects contribute to reducing oxidative stress, improving endothelial function, and preventing cardiovascular dysfunctions. Thus, several products with antioxidant properties that are available in nature and their application in the treatment of hypertension are described in the literature. The therapeutic effects of these products seem to regulate several parameters related to arterial hypertension, in addition to combating and preventing the deleterious effects related to the disease.


Asunto(s)
Antioxidantes , Hipertensión , Humanos , Antioxidantes/efectos adversos , Antihipertensivos/efectos adversos , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Estrés Oxidativo/fisiología , Radicales Libres/farmacología , Radicales Libres/uso terapéutico
16.
Nutrients ; 15(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242167

RESUMEN

This review aims to discuss the delicate balance between the physiological production of reactive oxygen species and the role of antioxidant nutraceutical molecules in managing radicals in the complex anatomical structure of the eye. Many molecules and enzymes with reducing and antioxidant potential are present in different parts of the eye. Some of these, such as glutathione, N-acetylcysteine, α-lipoic acid, coenzyme Q10, and enzymatic antioxidants, are endogenously produced by the body. Others, such as plant-derived polyphenols and carotenoids, vitamins B2, C, and E, zinc and selenium, and omega-3 polyunsaturated fatty acids, must be obtained through the diet and are considered essential nutrients. When the equilibrium between the production of reactive oxygen species and their scavenging is disrupted, radical generation overwhelms the endogenous antioxidant arsenal, leading to oxidative stress-related eye disorders and aging. Therefore, the roles of antioxidants contained in dietary supplements in preventing oxidative stress-based ocular dysfunctions are also discussed. However, the results of studies investigating the efficacy of antioxidant supplementation have been mixed or inconclusive, indicating a need for future research to highlight the potential of antioxidant molecules and to develop new preventive nutritional strategies.


Asunto(s)
Antioxidantes , Oftalmopatías , Humanos , Especies Reactivas de Oxígeno , Estrés Oxidativo/fisiología , Suplementos Dietéticos , Oftalmopatías/prevención & control
17.
Arch Gerontol Geriatr ; 112: 105035, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37075585

RESUMEN

OBJECTIVES: The aim of this study was to investigate how melatonin administration affects retinal oxidative damage and retinal SIRT1 gene activation in diabetic elderly female rat model. METHODS: 16-months-old female rats were used in the study. A total of 24 rats were divided into 4 groups in equal numbers: Group 1. Control, Group 2. Control + Melatonin, Group 3. Diabetes, Group 4. Diabetes + Melatonin. In group 3 and 4 rats, diabetes was induced by intraperitoneal (IP) injection of streptozotocin. Groups 2 and 4 were given ip melatonin for 4 weeks. SIRT-1 gene expression was determined by PCR method and GSH and MDA levels by ELISA in retinal tissue samples taken from animals sacrificed under general anesthesia. RESULTS: In our study, the highest retinal SIRT1 expression values were obtained in the diabetes + melatonin (G4) group. The retinal SIRT1 expression values of the diabetes group (G3) were lower than group 4 and higher than the general control (G1) and control + melatonin (G2) groups. Again in our study, the highest retinal MDA values were obtained in the diabetes group (G3). The highest retinal GSH values were obtained in the Diabetes + melatonin group (G4). CONCLUSION: The results of our study showed that melatonin supplementation has a protective effect on retinal tissue in a diabetic elderly female rat model. This protective effect of melatonin supplementation occurs by increasing both retinal antioxidant activity and retinal SIRT1 gene expression.


Asunto(s)
Diabetes Mellitus Experimental , Melatonina , Humanos , Ratas , Femenino , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Estreptozocina/farmacología , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Diabetes Mellitus Experimental/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo/fisiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-36987766

RESUMEN

Background: COVID-19 is a disease in several stages starting with virus replication to dysregulation in immune system response, organ failure and recovery/death. Our aim was to determine the effect of Ganoderma lucidum, lycopene, sulforaphane, royal jelly and resveratrol extract on markers of oxidative stress, inflammation, routine laboratory analyses and duration of symptoms in COVID-19 patients. Methods: The oxidative stress parameters and interleukines 6 and 8 (IL-6, IL-8), tumor necrosis factor alpha (TNF-α) were determined in order to estimate the antioxidant and the anti-inflammatory effect of the product using a spectrophotometric and a magnetic bead-based multiplex assay in serum of 30 patients with mild form of COVID-19. Results: Statistically significant differences were obtained for all investigated parameters between the treated patients and the control group. Moreover, significant differences were observed for leukocytes, neutrophil to leukocyte ratio and iron. The average duration of the symptoms was 9.4±0.487 days versus 13.1±0.483 days in the treatment and the control group, respectively (p=0.0003). Conclusion: Our results demonstrated the promising effect of Ge132+NaturalTM on reducing the oxidative stress and the IL-6, IL-8 and TNF-α levels, and symptoms duration in COVID-19 patients. The evidence presented herein suggest that the combination of Ganoderma lucidum extract, lycopene, sulforaphane, royal jelly and resveratrol could be used as a potent an adjuvant therapy in diseases accompanied by increased oxidative stress and inflammation.


Asunto(s)
Antioxidantes , COVID-19 , Humanos , Antioxidantes/efectos adversos , Resveratrol/uso terapéutico , Resveratrol/farmacología , Licopeno/uso terapéutico , Licopeno/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Interleucina-8/farmacología , Estrés Oxidativo/fisiología , Inflamación/patología
19.
Front Endocrinol (Lausanne) ; 14: 1077315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777359

RESUMEN

Background: Primary ovarian insufficiency (POI) is a common gynecological disease with serious ramifications including low pregnancy rate and low estrogen symptoms. Traditional Chinese medicine is regarded as an effective treatment for POI. However, the therapeutic mechanism of it is unclear. Methods: In this study, a mouse model of primary ovarian insufficiency was established by intraperitoneal injection of cyclophosphamide (CTX) and He's Yang Chao Recipe (HSYC) concentrate was used for intragastric administration. Serum hormone levels (Anti-Müllerian Hormone, Estradiol, Progesterone, Luteinizing Hormone and Follicle Stimulating Hormone) and Oxidative Stress (OS) related products, superoxide dismutase (SOD), GSH-Px, and malondialdehyde (MDA) were measured by enzyme-linked immunosorbent assay. Pathological changes in ovarian tissue were evaluated by hematoxylin and eosin staining, and flow cytometry was used to determine reactive oxygen species content and mitochondrial membrane potential levels in granulosa cells. Mitochondrial distribution and morphology were investigated using immunofluorescence staining. The level of mitophagy was evaluated by LC3 immunofluorescence staining and autophagosome counts using electron microscopy. Western blotting and qPCR were used to detect the expression of proteins and genes related to mitophagy and the NLRP3 inflammasome. Results: After HSYC treatment, the ovarian damage was milder than in the CTX group. Compared with the CTX group; SOD, GSH-Px, and the total antioxidant capacity were significantly increased, while MDA and ROS were decreased in the HSYC treatment groups. Furthermore, mitochondrial distribution and membrane potential levels were improved after HSYC treatment compared to the CTX group. After the HSYC treatment, the LC3 fluorescent intensity and autophagosome counts were decreased. Similarly, mitophagy related markers PINK1, Parkin, LC3, and Beclin1 were decreased, while p62 was significantly increased, compared with the CTX groups. The mRNA and protein expression of NLRP3 inflammasome, NLRP3, caspase-1, GSDMD, IL-18, and IL-1ß were significantly decreased in the HSYC treatment groups. Conclusion: This is the first study in molecular mechanisms underlying HSYC against granulosa cell injury in POI. HSYC protects ovaries from CTX-induced ovarian damage and oxidative stress. HSYC enhanced ovarian function in mice with primary ovarian insufficiency by inhibiting PINK1-Parkin mitophagy and NLRP3 inflammasome activation.


Asunto(s)
Inflamasomas , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Inflamasomas/metabolismo , Mitofagia , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/metabolismo , Estrés Oxidativo/fisiología , Ubiquitina-Proteína Ligasas , Proteínas Quinasas/metabolismo , Superóxido Dismutasa/metabolismo
20.
Drug Chem Toxicol ; 46(3): 597-608, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35509154

RESUMEN

Diclofenac is a widely prescribed anti-inflammatory drug having cardiovascular complications as one of the main liabilities that restrict its therapeutic use. We aimed to investigate for any role of rutin against diclofenac-induced cardiac injury with underlying mechanisms as there is no such precedent to date. The effect of rutin (10 and 20 mg/kg) was evaluated upon concomitant oral administration for fifteen days with diclofenac (10 mg/kg). Rutin significantly attenuated diclofenac-induced alterations in the serum cardiac markers (LDH, CK-MB, and SGOT), serum cytokine levels (TNF-α and IL-6), and oxidative stress markers (MDA and GSH) in the cardiac tissue. Histopathological examination and Scanning Electron Microscopy (SEM) findings displayed a marked effect of rutin to prevent diclofenac-mediated cardiac injury. Altered protein expression of myocardial injury markers (cTnT, FABP3, and ANP) and apoptotic markers (Bcl-2 and Caspase-3) in the cardiac tissue upon diclofenac treatment was considerably shielded by rutin treatment. MYL3 was unaffected due to diclofenac or rutin treatment. Rutin also significantly improved diclofenac-induced gastrointestinal and hepatic alterations based on the observed ameliorative effects in key mediators, oxidative stress markers, histopathology examination, and SEM findings. Overall results suggest that rutin can protect the diclofenac-induced cardiac injury by lowering oxidative stress, inhibiting inflammation, and reducing apoptosis. Further research work directs toward the development of phytotherapeutics for cardioprotection.


Asunto(s)
Antiinflamatorios no Esteroideos , Antioxidantes , Diclofenaco , Inflamación , Rutina , Animales , Ratas , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/toxicidad , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Diclofenaco/farmacología , Diclofenaco/toxicidad , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Cadenas Ligeras de Miosina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Rutina/metabolismo , Rutina/farmacología , Rutina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA